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An interpolative technique is presented which yields accurate numerical solutions to 
various types of integral equations, the kernels of which contain poles. It is also shown 
that other techniques which are successful when the kernel is weakly singular are unsatis- 
factory when the singularities are poles. The success of the approach is illustrated by various 
examples of physical interest. 

1. INTRODUCTION 

Many physical problems involve integral equations which have kernels that contain 
pole singularities. In this paper, an interpolative procedure is presented which leads to 
a very straightforward, accurate numerical solution to such equations. Linear integral 
equations are considered first. 

In general, nonsingular linear integral equations can be solved numerically by 
approximating the integral by a sum over a suitable set of quadrature points. That is, 
if the kernel, K, is nonsingular, 

$(z> = h,(z) + A jab K(z, z’) $(z’) dz’ 

is written approximately as 

where zj and wj are the abscissas and weights of the quadrature used. A solution is 
then achieved by matrix inversion. 

#(Zi) = 5 11 - Xm? +0(q) 
j=l 

(3) 

with Mij = w,K(z< , zj). 
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If K(z, z’) is singular, such a straightforward scheme cannot be used. If, for example 

F-T, qz, z’) = co, 

the diagonal elements of Mij as defined above would be infinite. Thus, to obtain a 
numerical solution to such singular equations, techniques must be found which cor- 
rectly deal with these singularities. 

In this note, integral equations with kernels that have pole singularities are con- 
sidered. It is illustrated, by examples, that the method presented here treats the 
singularities correctly and yields very accurate solutions to equations of physical 
interest. 

In Section 2, an equation is considered in which the kernel is of the form 

iqz, z’) = T(z, z’)/(z - z’)p , (4) 

where T(z, z’) is a bounded continuous function for all values of z, z’, and does not 
vary wildly over this range. (Such functions will be called “well behaved.“) P means 
the Cauchy principal value. The proposed method is presented in this section. As 
illustrative examples, equations with kernels described in Eq. (4) are considered, one 
inhomogeneous and one homogeneous. 

In Section 3, the technique is applied to an equation in which the kernel has a fixed 
pole. 

K(z, z’; E) = V(z, z’)/(z’ - E)p . (5) 

In the illustrative example, a Lippmann-Schwinger equation is solved numerically. 
In Section 4, the approach is applied to nonlinear equations such as arise from 

dispersion relations. Here again, it is shown by example that the technique yields 
accurate results in a straightforward way. 

Two appendixes are also included. In the first, integral equations with infinite 
limits are discussed. No numerical examples are considered. In the second, other 
techniques presented elsewhere are compared with the approach of this paper. 

2. LINEAR EQUATIONS WITH CAUCHY SINGULARITIES 

A linear integral equation with a Cauchy singularity (with a kernel like that of 
Eq. (4)), has the form 

(6) 

Here h is a known constant, and & and Tare well-behaved functions. 
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It is quite straightforward to show if either a or b is finite, Eq. (6) can be trans- 
formed into an equation of the form 

(7) 

It is in this form that a solution to the integral equation is studied. 
To solve Eq. (7), I propose a particular interpolative approximation to 4. It yields 

a straightforward numerical system to solve and, as will be seen, accurate results. 
To begin, Eq. (7) is rewritten 

It is first noted that the first integrand is no longer singular at y = x since U is a well- 
behaved function and thus has a Taylor expansion in y around x. Thus the first integral 
can be well approximated by a quadrature sum. With x = xi , the first integral is 
approximately 

g wJu(x~ ’ xj) - U(Xi , Xi)] r$(xj)(xi -xi)-l, (94 

where the j = i term is 

As with nonsingular equations, this method will solve these linear equations by 
matrix inversion. In order that the matrix inversion be straightforward, the second 
integral of Eq. (8) should be accurately approximated by a sum in which 4 is evaluated 
at the same quadrature points {xi> as those used in Eq. (9a) to approximate the first 
integral. To accomplish this, note that the quadrature abscissas are the zeros of some 
polynomial AN(x) (for an N-point quadrature rule). That is, A,(xJ = 0. Thus, 4 is 
interpolated over the interval [--I, l] as 

N AN(Y) dcxj> 

‘(‘) = ,F; ( y - xj) AN’(&) - 
(10) 

(The reader is referred to Ref. [ 11.) Because the interval is [ - 1, 11, it is very convenient, 
though not necessary, to take AN(y) to be the Legendre polynomial PN(y). It should 
be noted that Gaussian quadratures are convenient to use in this scheme. This is 
because the Gaussian quadrature points do not include the end points where 4(y) is 
expected to be singular [2]. Methods have been presented which remove these end- 
point singularities [3]. Thus, at the interior points, where 4(v) is not singular, a 
polynomial approximation can be expected to work well. 
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Using Eq. (lo), with AN(r) = PN(y), the second integral becomes 

Using the integral representation of the Legendre function of the second kind, 

Qdx) = 4 s_: PN(Y)(x - 19;’ &, 

the second integral becomes 

2 5 &i> [Q&i) - Q&i>1 
j=l PNYX,.) (Xi - Xj) ’ UW 

where the j = i term is 

Thus, with Eqs. (9) and (12) the matrix equation for 4 is 

Wi> = .mi) + h jg &9w, 

where 

Mij = @U(xi, xj) - U(xi, xi)] + 2 u$(x,i+QN(xJ - 
n 3 

- 

WW 

(134 

Qdxj)]) (xi - x&l, 

WI 

the diagonal terms being given by Eqs. (9b) and (12b). The matrix elements are all 
finite and relatively simple to generate. Thus, a straightforward solution to Eq. (13a) 
can be achieved by matrix inversion. Values of the unknown function at points other 
than those in the abscissa set {xi} can be found by inserting the values of #(xi) from 
the solution of Eq. (13a) into Eq. (10). 

To illustrate the accuracy of a numerical scheme, it is customary to solve an equa- 
tion and compare the results to a known solution. An example of an equation of the 
type considered in this section is the Omnes equation [4], which arises in the theory 
of low-energy scattering processes involving the pion and nucleon in the initial or 
final state. The simplest form of the Omnes equation which contains the pole sin- 
gularity is 

(14) 

where h(z) = exp[iS(z)] sin S(z). 
In general, since the kernel of Eq. (7) is singular, the homogeneous as well as the 

inhomogeneous equation has a nontrivial solution. Thus, the total solution is the 
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particular solution to the inhomogeneous equation added to a linear combination of 
the independent solutions to the homogeneous equations [2]. The inversion method 
presented here will only yield a solution to the inhomogeneous equation; that is, only 
a particular solution. However, for the Omnes equation, if the phase shift is zero at 
z = 1 in Eq. (14), the particular solution to Eq. (14) is the complete solution [2,4]. 
This solution is (reproducing Eq. (2.11) of Ref. [4]) 

$(z) = exp[iS(z)] (F(z) cos 6(z) + + P Ilrn F(z’) sin ~~~fr-~(z’)l dz’), (15) 

where 

p(z) = ; P llm & dz’. 

To illustrate the approach of this paper, I solved the Omnes equation in the form of 
Eq. (14). Writing (z’ - z - ie)-l = (z’ - z);’ + k&z - z), and noting that 
1 - z%*(z) = exp[-S(z)] cos S(z), Eq. (14) can be written as 

G(z) = F(z) + $ P Jim %pf(;; G(z’) dz’, 

where G(z) z exp[-is(z)] cos 6(z) I,!J(z). Using the transformations 

z = 241 + 4, z’ = 241 + v), 4(x> = f--W/(l + 4, f(x) = ~(z)l(l + 4 

Eq. (17) becomes 

I use a function F(z) = 0.5/z [5], and parametrize the phase shift by 

or 

S(z) = [(z - l)/zZ] 7r, 1 <z<co, 

wu + UN = (1 - JJ”> n/4, -1<yy1. (19) 

With this parametrization, Eq. (15) is the complete solution to the Omnes equation. 
In Table I, the results of inverting the Omnes equation of Eq. (18) are compared 

with the appropriate analytic form. As can be seen, the technique yields accurate 
results. Using a 20-point quadrature rule, one can see that the numerical solution is 
within 0.003 ‘A of the analytic value. A 40-point rule brings the inversion solution to 
within 0.0002 % of the analytic result. To illustrate that accurate results are obtained 
by this method at points other than those in the abscissa set, Table Ib presents values 
of b(x) at randomly chosen points not in {xi>. Thus, this straightforward scheme 
appears to be very satisfactory for equations typified by Eq. (6). 
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TABLE Ia 

Comparison of Solution of Omnes Equation with Analytic Form 

Z 

Calculated Analytic 
values values % Difference 

1.003 

2.166 

4.089 

7.884 

22.788 

291.061 

1.001 

2.081 

3.869 

7.335 

20.429 

1134.887 

20 points 

0.4188 0.4188 

0.1645 0.1645 

0.1315 0.1315 

0.1307 0.1307 

0.1380 0.1380 

0.1492 0.1492 

40 points 

0.4144 0.4144 

0.1703 0.1703 

0.1322 0.1322 

0.1304 0.1304 

0.1372 0.1372 

0.1508 0.1508 

0.00069 

0.0015 

0.0012 

0.00019 

0.00043 

0.0029 

0.000038 

0.000075 

0.000062 

0.000010 

0.000045 

0.00019 

TABLE Ib 

Interpolation of Solution to Omnes Equation to Intermediate Points 

x Z 

Calculated 
values 

Analytic 
values % Difference 

0.99999 

0.80 

0.40 

-0.20 

-0.60 

-0.99999 

Using 20-point solution 

1.ooo 0.41364 0.41223 0.0034 

1.111 0.43647 0.43646 0.00003 

1.429 0.28826 0.28826 o.OOOOO4 

2.500 0.14961 0.14961 o.OOOOO9 

5.000 0.13001 0.13001 0.000904 

2 x 105 0.15106 0.15165 0.004 

0.99999 
0.80 

0.40 

-0.20 

-0.60 

-0.99999 

Using 40-point solution 

1.000 0.41257 0.41220 0.0009 
1.111 0.43646 0.43646 o.OOOOO3 

1.429 0.28826 0.28826 0.00002 

2.500 0.14961 0.14961 0.00002 

5.ooo 0.13001 0.13001 0.00003 

2 x 105 0.15111 0.15113 0.0001 
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As mentioned before, the total solution to the general equation (6) also requires the 
solution to the homogeneous counterpart. When this interpolative approach is applied 
to the homogeneous form of Eq. (6), an algebraic system identical to Eq. (13) with 
f(xJ = 0 results. Thus, the solution of the homogeneous integral equation becomes 
the solution of a homogeneous set of algebraic equations 

where Mij is given by Eq. (13b). 
To solve this set of algebraic equations, the idea is to normalize the unknown 

function so that, for example, 4(xN) = 1. That is, Eq. (20) is divided by (b(xN) and 
becomes 

N-l 

1 = AMNN + x c MN&j, 
i=l 

where S& = j&)/~#(x~). The (N - 1)-d imensional subset of equations in Eq. (21b) 
is solved by inversion, and Eq. (21a) serves as a consistency check on the solution. 

To illustrate that the present approach is satisfactory for homogeneous equations, I 
solved the Mime equation for the radiative flux, which is given in a report by Bareiss 
and Neumann [6, Sect. IV]. This is a well-known problem arising in the theory of 
radiative transfer and neutron transport [7]. 

) 4(z) = ; P I:1 z’#(z’)(z’ - z)-’ dz’. (22) 

To compare the results of inverting Eq. (22) by the present method with results 
obtained in Refs. [6,7], I used a 20-point quadrature rule, and inverted the set of 
equations corresponding to Eq. (21b). I then used a Lagrange interpolation to obtain 

TABLE IIa 

Comparison of Radiative Flux as Found by Approach of This Paper, Method of 
Ref. [6], and Chandrasekhar Results 

-IL 
Method of Ref. [6], 

50 points 
Method of 
this paper 

Chandrasekhar 
results 

0.05 0.4027 0.4031 0.4032 
0.35 0.6154 0.6159 0.6159 
0.65 0.8097 0.8102 0.8102 
0.95 1.0000 1.0000 1.0000 
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TABLE IIb 

Check on Consistency of Solution of EQ. (21b) by Substitution of Solution 
into Eq. (21a) 

N-l 

x 1 MNI 
j-1 

1 - AMNN ‘A Difference 

1.14393 1.14402 0.008 

4(z) at the points reported in Refs. [6, 71. The comparison is presented in Table IIa. 
As will be noted, the 20-point rule using the approach of this paper is closer to 
Chandrasekhar’s results than the 50-point scheme used in Ref. [6]. As can be seen in 
Table IIb, the consistency of the calculation, suggested by Eq. (21a), is also quite good. 

It therefore appears that an integral equation, the kernel of which contains a Cauchy 
singularity, can be inverted accurately, in a straightforward way, using a relatively 
small matrix. 

3. KERNELS WITH FIXED POLES: THE LIPPMANN-SCHWINGER EQUATION 

In this section the technique described for inverting linear equations with Cauchy- 
like kernels is applied to equations with kernels containing a fixed pole. To illustrate 
the scheme for such a kernel a Lippmann-Schwinger equation will be used as an 
example. 

The partial-wave Lippmann-Schwinger equation has the form 

+Q,,“, p’2; k,2) = ~~(~2, p’“) - ; lrn vz(p;i2k? $ffyl:;; ko2) k2 dk, (23) 
0 0 

where, in this form, the on-shell amplitude is related to the phase shift by 

#z(ko2, k,2; ko2) = -(l/k,) exp[iSz(ko2)] sin 6,(ko2). (24) 

As with Cauchy-like equations, the first step is to project out the principal-value 
integral in Eq. (23). Suppressing the angular momentum dependence, this yields 

$wP”, Jf2; ko2) = v P’, p’“) - ikoVp2, k,2) #(ko2, P’~; k,2) 

2 
s 

O” -- v(P2, k2) $(k2, P’? ko2) k2 & 
rr 0 (k2 - ko% 

(25) 

Setting p2 = ko2 yields an equation for #(ko2, P’~; ko2). Inserting this into Eq. (25) 
yields the desired equation, containing only the principal-value integral. 
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#(P”, P’? k,2) = V( p2, p’“) - ik,V(p2, k,2) V(k2, p’2)[1 + ik,V(k,2, k,2)]-’ 

- + jrn (V(p”, k2) - ik,?‘(p2, k,2) V(ko2, k2)[1 + ik,V(k,2, ko2)]-l) 
0 

x W2, If2; ko2) k2 & 

(k2 - k,2)p * (26) 

It is now straightforward that one can proceed to use the technique of Section 2 to 
invert Eq. (26). First a transformation is made from (p, k, k,) which E [0, co] to 
variables (x, y, E) which E [- 1, 11. Here, E = (ko2 - l)/(ko2 + 1). The subtraction 
of the smooth part of the kernel is now made at the fixed point y = E(k = k,), 
rather than at y = x (k = p) as in Section 2. Transformation to the (x, y, E) variables 
yields the matrix equation 

with 

&xi, x’; E) = f(xi , x’; E) - 5 Mij4(xj, x’; E) 
j=l 

(274 

Mii = 
( 
wj[U(xi , xj ; E) - U(x< , E; E)] 

+ 2 U(x, , E; E) 
PN’(Xj) [QdxJ - QdBl) (xi - W. 

U(x, y; E) results from the transformation of the bracketed terms in the integral of 
Eq. (26) and f(x, x’; E) comes from the transformation of the inhomogeneous term. 
As with Cauchy-like equations, all the elements of Mij are finite, the differences being 
replaced by derivatives if the chosen value of E happens to equal one of the abscissa 
points. 

To illustrate the viability of the proposed method in solving this type of equation, 
I consider the Lippmann-Schwinger equation with the Yamaguchi potential 

V( p2, p’“) = h(p2 + P”)-’ (p’” + p”)-‘. (28) 

Osborn [8] has discussed the method of moments to solve the Lippmann-Schwinger 
equation, using this potential as an example. (Additional comments about the method 
of moments are presented in Appendix B.) Following Osborn, X and /3 are chosen to 
be -8.110 and 1.444, respectively, so that the triplet n-p bound-state energy and 
scattering length are correctly given for this potential. This potential has the attractive 
feature that because it is separable, the kernel of Eq. (23) is degenerate. Thus, one can 
easily find the analytic solution. It is 

#(P”> f2; ko2) = (p” + p”>-’ (p’” + ,e”)-1 (I + 2B(B ” iko)2 )-‘. (29) 

I compare the result of inverting Eq. (27a) with this analytic form setting p’ = k, . 
The transformation p = (1 - x)/(1 + x) takes the interval [0, co] to [- 1, 11. These 
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TABLE III 
Comparison of Solution to Lippmann-Schwinger Equation with Yamaguchi Potential to 

Analytic Solution 

X 

Calculated 
values 

Analytic 
values 

20 points 
0.9931 
0.3737 

-0.7463 

-0.9931 

30 points 
0.9969 
0.3527 

-0.7678 

-0.9969 

20 points 
0.993 1 
0.3737 

-0.7463 

-0.9931 

30 points 
0.9960 
0.3527 

-0.7678 

-0.9969 

20 points 
0.9931 

0.3737 

-0.6361 

-0.9931 

koa = 0.1 

0.006721-0.0215571 0.006722-0.021556i 

0.4589~1.472Oi 0.459cL1.47191 

0.8803-2.82361 0.8805-2.8235i 
0.9401-3.01533 0.9403-3.0152i 

0.0030451-0.00976531 

0.47038-1.508441' 

0.88599-2.841253 

0.94111-3.0179981 

koe = 10 

0.0030453-0.0097652i 
0.47041-l .50843i 

0.88604-2.841211 

0.9411~3.017959i 

-0.00194843-0.00029696i -0.00194839-0.00029694i 
-O.l33043~.020277i -0.133040-0.0202761 
-0.255214-0.0388973 -0.255208-0.0388951’ 
-0.272543XW415381 -0.272536-0.041536i 

-0.00088265&0.0001345521 

-0.136343A-LO207793i 

-0.256810-0.0391391 

-0.272785-0.0415739i 

ko2 = 0.22 
(E = -0.6361) 

-0.000882650-0.000134519i 

-0.136342-0.020779Oi 
-0.256808-0.03913861 
-0.272783-0.04157333 

-0.00041236-0.01673687i -0.00041238-0.016736873 

-0.028157-1.1428291’ -0.028156-1.1428293 

-0.05220~2.11893Oi -0.0522042.1189301’ 

-0.057680-2.341118i -0.057678-2.3411181 

comparative results at representative values of x are presented in Table III. As can 
be seen, a 20-point quadrature rule yields an accuracy to three decimal places. A 30- 
point rule increases the accuracy to at least four decimal places. This indicates that 
this appraoch is a satisfactory one for solving equations with kernels containing 
fixed poles. 
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4. NONLINEAR EQUATIONS ARISING FROM DISPERSION RELATIONS 

In this section, integral equations which result from dispersion relations for scat- 
tering amplitudes are studied. Such equations are of the form 

Re F((s) = Fob(s) + $ f m V(s, s’) Im F(s’)(s’ - s&l ds’, 
a 

(30) 

where V(s, s’) is specified by the type of subtraction made. The nonlinearity arises 
from the unitarity constraint 

Im F(s) = p(s)\ F(s)12. (31) 

The singularity of the kernel in Eq. (30) is again handled using the interpolative 
approach of this paper. Transforming the interval to [- 1, I] and then applying the 
interpolation to Eq. (30) yields 

(32) 

where 

and 

W) = 4s) + g(s), (334 
s= -1 +2a/x, a # 0, 

= (1 + x)/(1 - 4 a = 0, Wb) 

Gj = Wl(Xi 3 4 - V&i , Xi)1 wi 
+ 2vdxi , xi)[Q&i> - Q&~WJ’~‘(~~M-G - xd-‘, (33c) 

where V1(xi , xi) = V[S(X~), s(xJ] multiplied by a factor coming from transforming 
the range of integration. 

Equation (31) can now be written as 

P(4 = &i)[~“(Xi) + B”Wl* (34) 

Inserting Eq. (32) into Eq. (34) yields 

With 

(35) 
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and 

Vfjk = &i)P,A, + (l/n2) C&k], 

Eq. (35) can be rewritten as 

Wb) 

(37) 

In order to illustrate the usefulness of the proposed approach to this type of 
problem, I considered the problem introduced by Blankenbecler et al. [9] with which 
they tested the validity of approximating the left-hand cut in potential scattering by 
the contribution from the Born term. The equation involved is 

with 
Im F(s) = s1j2 1 F(s)12. W-9 

This equation has the solution 

2gu + 4s) 
s 

O3 (s’)li2 ds’ -1 

rr 0 (1 + 4s’)2 (s’ - s - ie) 1 * (39) 

To solve Eqs. (38), the transformation from s E [0, co] to x E [- 1, l] was made 
(see Eq. (33b)). The functions 

u(x) = o+(x)]/(l - x) and w = Bb.s(x)1/(1 - 4 (40) 

arise naturally from the transformation. A nonlinear algebraic system of equations 
for b(x,), which evolve from Eq. (37), was solved, and a(xJ was generated from b(x,) 
according to Eq. (32). 

In Table IV, the numerical solutions to these functions are compared to the appro- 
priate analytic values with g = 1. As can be seen, the numerical and analytic solutions 
are within 1.6 o? of each other when 20 quadrature points are used. This difference is 
reduced to 0.74 ‘A or less by increasing the number of quadrature points to 40. Even 
though these errors are very small it should be noted that the largest differences do 
occur at s = 0, where F(s) has a square root branch point. The small size of the errors 
does indicate, however, that this interpolation scheme is a viable one for nonlinear 
equations as well. 

The solutions presented in Table IV were obtained using a program, available on the 
Stanford computing system, called NSOlA. The algorithm uses the method of steepest 
descent to get near a solution. The program then switches to a Newton method to 
home in on the solution. This makes for very rapid convergence. This approach is 
documented in Technical Report AERE-R.5947, Harwell, England, November 1968. 
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TABLE IV 

Results at Selected Points for Dispersion Integral Equation of Blankenbecler et al. 

Analytic % Analytic % 
x 4x) value Difference b(x) value Difference s 

0.993 -0.4965 -0.4987 0.45 0.0289 0.0292 0.91 290.06 
0.746 -0.4618 -0.4618 0.0083 0.1587 0.1587 0.019 6.88 
0.007 -0.4290 -0.4290 0.0073 0.2418 0.2418 0.021 1.17 

-0.374 -0.4596 -0.4596 0.0028 0.2573 0.2573 0.0081 .46 
-0.993 -0.6672 -0.6619 0.80 0.5241 0.5158 1.6 .003 

0.998 -0.4985 -0.4997 0.24 0.0148 0.0148 0.48 1133.89 
0.825 -0.4718 -0.4718 0.0022 0.1364 0.1364 0.0045 10.40 
0.342 -0.4317 -0.4317 0.00087 0.2210 0.2210 0.0024 2.04 

-0.268 -0.4475 -0.4475 0.00084 0.2562 0.2562 0.0025 .58 
-0.998 -0.6679 -0.6654 0.37 0.2651 0.2632 0.74 0.001 

20-Point-quadrature rule 

40-Point quadrature rule 

APPENDIX A: INTERPOLATIVE APPROACH APPLIED TO LINEAR INTEGRAL EQUATIONS 
WITH INFINITE OR SEMI-INFINITE LIMITS 

In the body of this paper, all integrals were transformed to the interval [- 1, 11, 
including equations in which the parameters ranged over the interval [a, co]. The 
range [- 1, l] is found to be very convenient for this approach since the integral 

s l 4(Y) 
-1 6 - Y)P dy 

is easily evaluated when d(y) is interpolated over the Legendre polynomials. Con- 
siderable information about the second Legendre functions Q&) is readily available. 
Equations involving the interval [- co, co] were not considered because there is no 
simple transformation which will take 

s m f(x’)(x - x);’ dx’ - s_:f(y’) T(Y’)(Y’ - Y&I dy’, 
--m 

where T( y’) is defined from dx’ = T( y’) dy’. 
However, it may be possible to deal directly with semi-infinite or infinite intervals 

using the interpolative approach of this paper. 
In this appendix, I consider equations of the form 
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and 

In Eq. (Al) there is no loss of generality in taking a = 0, and this will be done hence- 
forth. For integrals over the range [0, co], the most natural quadrature to use is one 
over the Laguerre polynomials. This rule approximates an integral as 

s om exp[-xl f(x) dx = f Wan, 
j=l 

where xj is a zero of the Nth Laguerre polynomial. 
Similarly, an integral over the range [-00, cc] is approximated by a Hermite 

quadrature rule as 

f m exp[ -x2] f(x) dx N_ 2 w&xi) G44) -02 j=l 

with xj a zero of the Nth Hermite polynomial. It is generally agreed that it is essential 
for the exponential factors to appear explicitly in the integrand of Eqs. (A3) and (A4) 
[lo]. Otherwise, unless the function g(x) falls off at least as rapidly as the exponential, 
one obtains very poor results by approximating the integrals involving infinite limits 
as 

or 

jam g(x) dx = 6 exp[--xlCexpbl &>) dx N 5 wj expkl dxJ (A5) 
j=l 

j-1 g(x) dx = j-1 exp[-x2](exp[x2] g(x)) dx N 5 ~j exp[xj2] g(Xj)- (-46) 
j=l 

The failure of such approximations is due to the fact that the exponential factor 
multiplying g(y) in the approximate sum weights the contribution from the large 
x$‘s much too heavily [lo]. Thus, in order that one be able to apply an interpolative 
approach to Eq. (Al) directly, without first transforming to [-I, 11, or be able to 
apply such a scheme to Eq. (A2) at all, it is required that one have 

Vx, v) = W-A Wx, u> for Eq. (Al), 

= exp[--iv21 W, v> for Eq. (A2), 
G47) 

with V(x, v) a well-behaved function. If the above condition is satisfied, one can then 
proceed. Writing the integral equations in subtracted form, 
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and 

The first integral in Eq. (A8) will now be well approximated by a sum over Laguerre 
quadratures, and the first integral of Eq. (A9) is well approximated by a Hermite 
quadrature rule (since V(x, JJ) is assumed to be well behaved). Then, as suggested by 
the approach outlined in the body of the paper, 4(y) in the second integral of each 
equation must be interpolated as in Eq. (10) using a Laguerre and a Hermite poly- 
nomial, respectively. 

Consider 

As in Eq. (IO), 4 is written 

Defining 

it is straightforward to show that 

N ~(Xj> Pbdxi) - h&)1 
rdxJ = ??I &‘(x.) 3 (Xi - Xj) . 

C412) 

(A13) 

All that is required now is to study the properties of (IN(x) so that (IN(xi) and n,‘(xJ 
(for the j = i term) can be generated. 

The Laguerre polynomials satisfy 

N&(x) = (2N - 1 - x) &J-I(X) - (N - 1) L&X), N 3 2. (A14) 

From this, using the orthogonality relation 

s m exd-vl LAY) b = 0, N >, 2, (Al3 
0 

it is easy to show that AN(x) satisfies the same recurrence relation, Eq. (A14). Thus, 
noting that 

A,(x) = exp[-x] B(x), 4(x) = 1 + (1 - x>~o(x), 6416) 

581/26/3-z 
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d,(x) can be generated from Eq. (A14). From the recurrence relation 

one can generate 

XL’(X) = ww(x) - -L-I(X)1 (A17) 

h-,‘(x) = (I/x) J%(O) - 4&4 + W/x)([~,(x) -4&)I - PMO) - 4dOl> 6418) 
and all the needed properties of (I,(x) are well defined. 

To apply this scheme to Eq. (A9), one seeks to interpolate 4(y) over Hermite 
polynomials in the second integral. Define 

As expected, one writes 

and IH(xI) becomes 

where I have defined 

rlN(X) = p J- m exp[--y21 ffNW + 
--m (x - 34 * 

(Al% 

@w 

As with the Laguerre interpolation, all that is needed to completely define this system 
is a detailing of the properties of q,,,(x). 

Since the Hermite polynomials satisfy 

ffN+l(xl = 2XffN(X) - 2~HN--IW, Nb 1, (~23) 

one can easily show, using the orthogonal&y condition 

s m exp[--y2] Hi&) dy = 0, N>, 1, (A24) -a2 

that qN(x) satisfies the same recurrence relation as HN(x). Thus, Q,(X) can be generated 
by first evaluating 

Totx) = I, (x - J& 
m exp[-PI + and 71(x) = 2[XQ(X) - 7rq (A252 

Using 

ffiv’h9 = 2Nf3~-,0% We) 
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it can easily be shown that 

%v’W = 9iww WW 

So all the necessary properties of q&) are known. Thus, if the kernel of Eq. (Al) 
or Eq. (A2) satisfies the conditions of Eq. (A7), one can also apply an interpolative 
approach directly to integral equations with parameters that run over a semi-infinite 
or an infinite range. 

APPENDIX B: OTHER TECHNIQUES APPLIED TO INTEGRAL EQUATIONS WITH POLES 

In an earlier paper by Ickovic and myself [l l] integral equations that had weakly 
singular kernels were considered. A weakly singular kernel is defined by 

‘,*$I, K(z, z’) = co, lL+T, (z - z’) qz, z’) = 0. 

The method presented in Ref. [l l] is outlined briefly at this point. Beginning with the 
equation 

the interval [aa, b] was broken into small segments. If xa is a quadrature point the 
integral was written 

jab K(x, x‘) #(xl) dx’ = 1 j”+’ K(x, x’) $(x’) dx’, 
j ei 

where Oj is the midpoint between xi-r and xi . #(xl) is then approximated in each 
segment [dj, 8,+r] by the constant #(xi). Thus, Eq. (B3) becomes 

tit%) = $otxi) + h ; $(xj> I”’ K(xi , x’) dx’. 
3 

The integrated kernel is no longer infinite and matrix inversion can be applied. 
In Ref. [Ill, we compared this approach with two other techniques which also 

handle weakly singular equations successfully. A scheme introduced by Ullman [ 121 
treats the equation as if the kernel were nonsingular, as in Eq. (2). However, the 
singular (diagonal) term is replaced by 

~44 (f:l’ Gi , x’> dx’, W) 

which is no longer infinite. Thus, the integral equation can be inverted. 
The other successful approach considered in Ref. [I 11 was a well-known subtraction 

technique used by Schlitt [13] (referred to here as the Schlitt method) to solve the 
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weakly singular equation used as an example in Ref. [II]. In this approach, Eq. (Bl) 
is written 

#(z> = #o(z) + h Jab K(z, z’>[#(z’) - #(z>] dz’ + h+(z) j-b K(z, z’) dz’. 036) a 

Assuming #(z’) has a Taylor series expansion around z’ = z, the first integrand is no 
longer infinite, and so the first integral can be approximated by a quadrature sum. 
The second integral is evaluated analytically, the integrated kernel being finite for all z, 
since the singularity is weak. 

I have investigated the possibility that these approaches might be applicable to 
equations with pole singularities. First, I attempted to solve an equation with a 
Cauchy singularity using the Cohen-Ickovic technique outlined in Eqs. (B3) and (B4). 
Applying this to the Omnes equation, I found very poor agreement with the analytic 
values. The results were incorrect by about 50 % on the average, and by as much as 
200 % at some points. I found that the Ullman scheme, applied to the Omnes equation, 
yielded highly inaccurate results also, with the same errors obtained with the Cohen- 
Ickovic approach. 

A simple investigation, approximating a known integral containing a pole 

by a Cohen-Ickovic or Ullman sum, indicates that the inaccuracies are due to the 
failure of both of these methods near the end points (*l). 

The Schlitt method faired considerably better. This method yielded results which 
were in reasonable agreement with the analytic values. However, the results were not 
as accurate as the interpolative approach of this paper. To evaluate the derivative 
a#/& arising from the diagonal term in the approximation of the first integral of 
Eq. (B6), I used the Legendre polynomial interpolation of Eq. (10). In Table V, a 

TABLE V 

Comparison of Solution of Omnes Equation Using Schlitt and Interpolative Methods 
with Analytic Form 

z 
Interpolative Analytic % Schlitt % 

method values Difference method Difference 

1.003 0.4188 
2.166 0.1645 
4.089 0.1315 
7.884 0.1307 

22.788 0.1380 
291.061 0.1492 

20-Point quadrature 

0.4188 0.00069 
0.1645 0.0015 
0.1315 0.0012 
0.1307 0.00019 
0.1380 0.00043 
0.1492 0.0029 

0.4258 1.67 
0.1608 2.25 
0.1276 2.96 
0.1272 2.66 
0.1355 1.79 
0.1490 0.16 
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comparison of these Schlitt results, the interpolative approach, and the analytic 
values is made. As can be seen, the interpolative method is preferable. 

As a final note, I discuss the method of moments used by Osborn in Ref. [S] for 
equations with fixed poles. As with the approach of this paper, it is an interpolative 
scheme, which can be applied to equations with Cauchy singularities as well as those 
with fixed poles. 

Briefly, the method involves writing the unknown function #(x) as 

&4 = f Ggdx). 
i=l 

Inserting this back into the integral equation yields an integral of the form 

s 
b U(x, Y) &(Y> dy 
a (x - y - k) 

for a Cauchy pole, or 

s 
b u(P2, k2) gdk3 dp 

a (k2 - k,2 - zk) 

037) 

039) 

for a fixed pole. Such an integral is called the ith moment of the kernel. 
There are a few drawbacks to this approach, however. Often the moments cannot 

be evaluated analytically (and thus take appreciable computer time for accurate 
numerical evaluation). If the unknown function #has rapid variations, or singularities, 
the function set {gi} will only be able to reproduce such behavior if the functions have 
some relation to the original unknown function #(x). For the Lippmann-Schwinger 
equation with the Yamaguchi potential, Osborn suggests that one use the solutions to 
the homogeneous equation for the functions gi . The Yamaguchi potential is separable 
and thus the solutions to the homogeneous equation are easy to find. For more- 
general equations, finding the homogeneous solutions involves considerable calcula- 
tion, if the solutions can be found at all. For these reasons, the method of moments 
may not be satisfactory. 
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